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Abstract

Primordial Black Holes (PBHs) might have formed in the early
Universe as a consequence of the collapse of density fluctuations with
amplitude § above some threshold d.. The mass of a PBH is generally
expected to be on the order of the horizon mass at its formation epoch.
However, this may not hold true when § 2 d.. In these cases, the
phenomenon of critical collapse must be considered, which results in
a much broader mass spectrum for the PBH population. We explored
PBH formation during the QCD epoch for a Crossover Model (CM)
within the regime of critical collapse. As a general result, we found
that although the number of PBHs is of the same order of magnitude
for analogous cases, their mass spectrum is considerably broader in
the case of critical collapse, spanning across four or more orders of
magnitude toward the smaller masses.
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1 Introduction

Primordial black holes (PBHs) may have formed in the early Universe due to
the collapse of density fluctuations (e.g. Hawking), [1971; |Carr} |1975} |[Novikov
et all [1979). During inflation, fluctuations of quantum origin are stretched
to scales much larger than the cosmological horizon, becoming causally dis-
connected from physical processes. The inflationary era is then followed by a
radiation-dominated epoch during which these fluctuations can re-enter the
cosmological horizon. For a given physical scale k, the horizon crossing
time ¢ (i.e., the instant when that scale re-enters the cosmological horizon)
is given by (e.g. Blais et al., [2003)):

ck = a(ty)H (tg), (1)

where a(ty) is the scale factor and H (t;) the Hubble parameter (cf. Sobrinho,
2011; |Sobrinho et al., |2016). The collapse that gives rise to the formation of
a PBH is now possible, but only if the amplitude of the density fluctuation
at horizon crossing;:

Am
O = m (2)
is larger than a specific threshold value .. If ; > ., then the expansion of
the overdense region will, eventually, come to a halt, followed by its collapse
leading to the formation of a PBH. On the other hand, if d; < ¢., then the
fluctuation dissipates without forming a PBH.

Numerically solving the relativistic hydrodynamical equations for a
radiation-dominated Universe, it is possible to show that 0.4 < §. < 0.6,
with the true value being a function of the shape of the energy density per-
turbation. Here we consider §. =~ 0.50, which corresponds to the typical
Mexican-Hat perturbation profile (e.g. Musco et al. [2021; [Musco, Jedamzik,
& Young, [2024)).

The threshold ¢, is constant through the radiation-dominated epoch, the
exception occurring during cosmological phase transitions, when the value of
d. decreases (as a consequence of the decrease of the sound speed). This is
relevant, since a lower value of §, favours PBH formation (e.g. |Carr} 2003).
The Standard Model of Particle Physics (SMPP) predicts two such phase
transitions:

¢ Electroweak (EW) phase transition at temperatures of ~ 100 GeV
(when the age of the Universe was ~ 10719 s), responsible for the spon-
taneous breaking of the EW symmetry. PBHs formed during this epoch
would have ~ 107% M, (cf. |Sobrinho), [2011)).
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¢ Quantum Chromodynamics (QCD) phase transition at 7, ~
170 MeV when quarks and gluons became confined in hadrons. PBHs
formed during this epoch would have ~ 0.5 My (cf. Sobrinho|, 2011;
Sobrinho & Augusto, 2020).

Less dramatic reductions in the value of ., may also occur during cosmic
annihilation epochs such as the eTe™ annihilation (EPA) epoch, favouring
the formation of intermediate mass PBHs (e.g. Sobrinho & Augustol 2024).
The majority of the PBHs formed at a particular epoch would have masses
within the order of the horizon mass, My, at that epoch (e.g. |Carr, 2003):

Mppu(ty) = Mu(ty), (3)

where (e.g. |Carr}, 2003):

My (t) ~ 1017 (10_23 S) g (4)

However, in the case of density perturbations with § only slightly larger than
0. we may have to consider the phenomenon of critical collapse in which case
the PBH masses rather obey the scaling law (Niemeyer & Jedamzik|, 1999):

Mppu(ty) = KMy(ty) (6 —6.)", (5)

where K is a dimensionless constant and the critical exponent v =~ 0.36
is universal (e.g. Sobrinho & Augusto|, 2007; [Kuhnel, Rampf, & Sandstad,
2015). This scaling law has been found to hold down to (6 — §.) ~ 10710
(Musco & Miller, [2013). We will distinguish between these two situations
by referring to them as simple collapse (equation [3|) and critical collapse
(equation [f]).

The aim of this report is to study the effect of gravitational collapse on
PBH formation during the QCD epoch. The report is organized as follows:
after reviewing, in Section [2] we give some key general results up to the PBH
density parameter and the PBH number density and show how these are
affected when critical collapse is taken into account. In Section [3| we consider
PBH formation during the QCD epoch for different scenarios. Finally, in
Section {4 we present some conclusions and ideas for future work.

2 The PBH density parameter

The probability that a fluctuation crossing the horizon at some instant t;
has of collapsing and forming a PBH can be written as (e.g. Niemeyer &
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Jedamzik], 1998)):

1 52
P(6,ty) = mexp (_W> ) (6)

where it is assumed that the primordial density fluctuations obey a Gaussian
distribution, with o%(#;) being the mass variance at horizon crossing. The
mass variance can be written as (e.g. [Sobrinho & Augustoj, 2020):

* P(kx) x

o*(k) = / $35ﬁ(kc)szﬁH(£)W§vH(%)d% (7)

where k. ~ 0.01 m~! is the smallest scale generated by inflation, the func-
tion Wy represents the Fourier transform of the top-hat window function,
62, (k.) is the amplitude of the density perturbation normalized to the pivot
scale k. = 0.05 Mpc™! =~ 1.6 x 1072 m™!, with 6% (k.) ~ 2.198 x 1079 (cf.
Planck Collaboration et al.,|2016]) and P is the power spectrum of the density
fluctuations, which, for a running-tilt power-law spectrum, can be written as

(e.g. Sobrinho & Augusto| |2020):

P(k) = P(k,) (gc)n(k)_l . (8)

The function n(k) appearing in equation , which specifies the dependence
of the power spectrum on the comoving wavenumber k, is called the spectral
index (e.g. (Carr, Kiithnel, & Sandstad, 2016):

0 =0t o (m g) (9)

where ng, n; and no represent, respectively, the spectral index at the pivot
scale k., the running of the spectral index and the running of the running of
the spectral index (e.g. [Erfani, 2014). In order for a non-negligible amount
of PBHs to be produced, we must have a blue spectrum, i.e., we must have
n(k) > 1 at least during some epochs in the early Universe (e.g.
2003)

Known values are n(k.) = ng ~ 0.9476, n; = 0.001 and ny, = 0.022
(e.g. [Erfani, [2014). In order to obtain a blue spectrum in some relevant
epochs during radiation domination, Sobrinho & Augusto (2020) worked on

the plane (ng, ny) assuming n; = 0 when ¢ > 5. In that case, we may consider
(cf. [Sobrinho & Augusto, 2020):

ni. k  my kN ns AN kN
n(k):no—i-?lnk—c—i-E(lnk—c) +ﬂ(lnk_c) +m<1ﬂk—c> . (10)




We are interested in situations for which n(k) shows a local maximum at
some point k = kyap With ny,00 = n(kmaez) > 1. In order to obtain that, we
consider (cf. Sobrinho & Augustol |2020):

ni kmax n2 kma:p 2 ns kmax ’ U2 kmaa: *
maxr — —1 — |1 — |1 — |1 5
" 1o 2 . ke 6 (n k. ) 24 t ke 120 t k.

dn(k) ny U] kmam ng kmam 2 U2 kmaz ’

- =0 —+—1 — (1 — (1 = 0.
a Nimhme =0 & b=t (== ) g (I
(12)

Given a pair of values (Nmaz, kmaz), Or equivalently (nmaz,t,..), we can
determine the corresponding pair of values (ns, n4) (cf. [Sobrinho & Augusto,

2020):

2
—4 (24%0 — 24N a0 + 90y In k?:x + 2n9 (111 k;’;:x) )

3 b))
kmaz
(111 maz >

2
kmaz kmaz
e -+ s (n )
1 .
ln kmax
ke

Considering, for example, n,,., = 1.803 (clearly a blue spectrum) and ¢y, .. =

1073 s we get from equations and ns = 0.0099 and n, = —0.0033.
With this set of values, we have plotted the curve n(k) (see Figure [1)).

ng =

20 (18n0 — 18n02 + 611 In
(14)

ngy =



Npax=1.803, logiy(ty,,/1ls)=-3

1.5

0.5

10 -5 0 5 10 15
t
logyg ( ‘kg )

Figure 1: The curve n(ty) (equation when N4, = 1.803 and t, . = 1073 s.

The PBH density parameter evaluated at the horizon crossing is given by
(e.g. [Niemeyer & Jedamzik|, [1998)):

1

If we neglect the effect of critical collapse as given by equation , then we
must consider instead simple collapse (equation which can be assumed
valid as a first approach. Inserting equations and @ into equation
we get:

1 o 52
B(tr) = m[c exp (— 202(tk)> do. (16)

When assuming that all the PBHs formed due to the gravitational collapse of
density fluctuations that crossed the horizon at the instant ¢; will form with
the mass My (t;.) (cf. equation {4]) it is common to refer to Qppy as 5. This
expression gives the fraction of the Universe that is converted into PBHs at
the instant t;. More exactly, it is the fraction of the Universe converted in
PBHs due to the gravitational collapse of density fluctuations that crossed
the horizon at the instant ¢.

If we want to consider the effect of the scaling law (cf. equation , then
the expression for () as given by equation is no longer useful. In that
case, we must consider instead:

1 +o00 52
Qo) = e i) / Mesn (5. 50 (g7 ) . (47
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which was obtained by inserting equation @ into equation ([15). Equation
(17) gives the PBH density parameter at the instant ¢, including PBHs of
all masses. In order to get the present-day value of Qppy(tx), we must take
into account the redshift (e.g. Ricotti, Ostriker, & Mack, 2008)):

Qppn(to, te) [1 + 2(teg)] = [1 + 2(t)] Qppa (th), (18)

where t., ~ 2.37 x 10'? s is the age of the Universe at matter-radiation
equality (cf. Sobrinho et al.; 2016). Taking into account the relation between
redshift and scale factor, we may also write equation in the form (e.g.
Sobrinho & Augusto, [2020)):

a(teq)
a(tr)

The present-day number density of PBHs formed at a given epoch tj, as-
suming simple collapse (i.e., all the PBHs formed with the horizon mass -
cf. equations |3| and , can be written as (e.g. Sobrinho, [2011} [Sobrinho &
Augusto, 2020):

Qppu(to, tr) =

Qppa(ty). (19)

Qppu(to, tx)

My(te) (20)

nepu(to, tk) = pe(to)
where p(to) ~ 8.26 x 102" kg m™® is the critical density of the Universe at
the present time (e.g. Sobrinho & Augustol [2020). If we are interested on
the present-day value of the PBH number density due to PBHs exclusively

formed between two given instants, t;, and tj,, then we may consider (cf.
Sobrinho & Augusto, 2020):

s Qppulto, t
nppu(to) = Pc(to)/ roi(fo, i)

A G P 21
w, Ma(t) " (21)

with tz, = 1072 s, since PBHs eventually formed before that epoch have
already evaporated (e.g. Sobrinho & Augustol, 2014), and #;, < 10° s, since
PBHs formed at that epoch and later on would have > 10'° M, and we are
not aware of any black hole candidates with masses above that value (e.g.
Saglia et al., 2016)).

If we want to consider the effect of critical collapse in the population of
PBHs, then we must replace Mpgpy(0,t)) in equation by the expression
given by equation . In order to do that, we consider the substitution on
the variable under the sign of integration from § to Mppy. From equation ({5)
we get:

~ (Mppp(ty) 1/7
§ = <—KMH(tk) ) + 0c (). (22)



Differentiating equation with respect to Mpgy we obtain:

do . 1 MPBH(tk) 1777

When § = . we get Mpgy = 0 and when § — +o0 it turns out that
Mppy — +oo. Inserting all this into equation and rearranging the
terms, we get:

1

Qppu(ty) = 7
V2 KV My (t) 5 o(t)

X

2

Mppu(ti) 1/7 > (24)
oo — + 0c(tr)
/ Myt o | - (( K My (ty) ) P

20’2 (tk)

This gives us the fraction due to PBHs of all masses formed after the collapse
of density fluctuations that crossed the horizon at the instant t,. If we are
interested on the value of Qppy due to PBHs within a specific mass range,
say, Mppr, < Mppy < Mppp,, we may consider:

1
Qppu(ty, Mppu,, Mppu,) = = X
1 U VR KV My (1) o(ty)

2
Mppu(ty) 1
PBH TS (1) Oc(t
e 1 <<KMH<tk> o)
MPBH(tk) /7 exp —
MppH,

dMppH-

202 (1)

(25)

Similarly, if we want the value of Qppgy due to PBHs with masses within the
range Mppy, < Mppy < Mppp, that were formed after density fluctuations
that crossed the horizon within the epoch tx, <1t <{,, then we may write:



1
Qppn (e, tey, Mpan,, Mppn,) = 2y K1 8
0

175 MppH, ]
= Mppa(te)'/7x
by o, Mu(te) o)

(26)
1/ 2
Mppp(ty)
— + 0c(tg)
K Mgy (tg) F—
Assuming that tg, — t;, = 0 we may write, after equation ((19)):
~ a(teq)
Qppu(to, thys thys MpaH,, MPBH,) ~ WQPBH(tkl stky, Mpai, , Mppm,),
(27)
where we are considering the average:
t t
th, = 22 (28)

Assuming that besides tg, — tx, = 0 we also have Mpgy, — Mppy, 2 0 then
we may write after equation (21)):

pe(to)2pam (to, thy s thes MpaH,, MPBH,)
Mpgu,,

nppu(to, tky s thy, MpaH,, MppH,) = ,

(29)
where we are considering the average:
Mppn, + Mppmh,

5 .
Equation gives us the present-day PBH number density for PBHs with
masses within the range [Mpgu,, Mppm,] formed after density fluctuations
that crossed the horizon at the epoch [tk,,tx,]. In order to obtain the num-

ber of PBHs inside a given volume V| we write (assuming that PBHs are
distributed homogeneously):

MppH,, = (30)

Nppu(to,tey s tey, Mpem,, Mpem,) = nppu(to, try s tkys Mpam,, Mppm,)V.
(31)



3 PBHs formed during the QCD phase tran-
sition epoch

We now consider the effect of critical collapse on the formation of PBHs
during the QCD epoch. Following |Sobrinho & Augusto (2020) we consider
for the QCD three different models: Crossover Model (CM), Lattice fit Model
(LM) and Bag Model (BM). We will pursue with the study of the five selected
cases, namely, ¢, =10"1s ¢, ~=10"3s,t, =105, t, . =10""s,
and t;, .. = 107% s. We will start with the 3(¢;) curves (cf. equation
from [Sobrinho & Augusto| (2020) with two updates that might introduce
some slight changes:

e the background value of the threshold is now ¢, = 0.5 instead of §. =
0.43: this directly affects the curve for d.(tx) during the QCD epoch;

e the observational constraints on PBHs were also updated (c.f. Carr et
al 2021a; Jesus & Sobrinho, 2025): this affects the values of 1,4

In Figure [2l we show the updated ((¢;) curve for the case t,,,, = 107" s with

max

Nmae = 1.948 which is valid for all the three QCD models.

—10 4

|
N
o

10910 (B(tk))

|
w
o

— Bewl(t)
— Bawl(t)
— Buwu(t)
-- Constraints B(t)

—-40 A

-3.0 =25 -2.0 -15 -1.0 -0.5 0.0 0.5 1.0
log1o (£)

Figure 2: The curve 3(t;) whenty, = 107! s and nye, = 1.948 (cf. equation.
The curve is valid for all the three QCD models (CM, LM and BM).

In Figure 3| we show the 3(t)) curves (cf. equation[L6]) for the case ty,,,, =
1073 5 With s = 1.808 (CM), Ttymae = 1.793 (LM) and 1 = 1.776 (BM).

10



0
— Beu(t)
-- Constraints B(t)
—~10 4
3 -20
=
5
<
]
8 -30
—40 4
-50
0
Bum(t)
-- Constraints B(t)
—~10 4
i:: -20
E
<
2
g -30
—40 4
=50
-10 -1
0
— Bau(t)
-- Constraints B(t)
-101 __,
3 -20
3
=
8 -30
—40
-50 T T T T T T
-8 -7 -6 -5 -4 -3 -2 -1
logo (7)

Figure 3: The curve 5(t) (cf. equation when tg, = 1073 s with nye, = 1.808
(CM), 7mas = 1.793 (LM) and nupes = 1.776 (BM).

In Figure 4 we show the f(t;) curves for the case t;, . = 107° s with
Tomae = 1.708 (CM), Timnas = 1.617 (LM) and e = 1.554 (BM).
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Figure 4: The curve B(ty) (cf. equation when tg, =107 s with nye, = 1.708
(CM), ez = 1.617 (LM) and nypq, = 1.554 (BM).

In Figure [5| we show the f((t;) curves for the case t;, . = 1077 s with
Mgz = 1.619 (CM), Nypee = 1.618 (LM) and ny4, = 1.552 (BM).
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Figure 5: The curve 5(t) (cf. equation when tg, =107 s with nye, = 1.619
(CM), ez = 1.618 (LM) and nypq, = 1.552 (BM).

Finally, in Figure |§| we show the (t;) curves for the case t;, . = 107" s
with 1,4, = 1.552 for all the three QCD models.
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Figure 6: The curve 5(t) (cf. equation when tg, = 1072 s with npe, = 1.552
for all the three QCD models (CM, LM and BM).

When t;,... = 107! s the effect of the QCD is quite negligible. In that
case, we just considered in equation the background value of the PBH
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formation threshold (i.e., d.(tx) = 0.5). For the other values of t__ , we are
working with, the values of J.(¢x) are obtained following the same procedure
as explained in [Sobrinho et al.| (2016). In the case of a QCD CM it turns out
that d.(x) is a single-valued function, meaning that we could just replace the
corresponding values in equation ([26)). However, when addressing the QCD
BM or LM this is not always the case since a new window for PBH formation
emerges at some point (cf. Sobrinho et al., 2016), implying that it would be
necessary to split the integral in equation (26| into the sum of two integrals.

We now consider PBH formation during the QCD epoch for a CM
within the critical collapse regime. For each of the five selected cases
(thy, = 1071s tg, .. = 1073s, t,.. = 107°s, t},.. = 1077 s, and
thya, = 1072 s) we divided the plane (log(ty),log(Mpps)) into sufficiently
small Alog(tx) x Alog(Mppg) cells (we chose to work with Alog(t;) = 0.005
and Alog(Mppg) = 0.005 since with these values the results already con-
verge reasonably). For each cell we determined the corresponding value of
Qppu(to, tey, thy, MpaH,, MppH,) With the help of equations and .
Applying equation we determined for each cell the corresponding num-
ber density of PBHs in the present-day Universe and, with the help of equa-
tion the effective number of PBHs (Nppg) per Gpc®. This procedure
allowed us to determine the region on the (log(tx),log(Mppy)) plane which is
relevant for the case under study (i.e., the region for which each cell contains
at least one PBH per Gpc?).

For example, when t;, = 107! s and n,,4, = 1.948 we find that the
relevant region is completely enclosed within the limits —5 < log (%) <1

and —10 < log (Afp—ﬁg) < 8. Dividing this particular region into cells with

sides Alog(tx) = 0.005 and Alog(Mppy) = 0.005 we get a total of 1200 x
3600 = 4 320 000 cells. We elaborate two matrices with these dimensions,
one for Qppy, which we call Ag, and another one for Npgy, which we call
AN-

Given the matrix Ag and a specific value of Mpgy we can integrate
with respect to ¢ in order to obtain Qppy(to, Mppy), i-e., the contribution
to Qppy due to PBHs with mass Mpgy, within the critical collapse regime,
regardless of the epoch in which they were formed. For comparison purposes,
we can also think about the Qppg(to, Mppr) curve associated with the simple
collapse regime. This curve is obtained by applying equation to each
value of ((t) from Figure 2| (in the case t,,. = 107! s).

Similarly, given the matrix Ay and a specific value of Mpgy we can inte-
grate with respect to t; in order to obtain nppy(to, Mppy) (cf. equation ,
i.e., the contribution to the PBH number density due to PBHs with mass
Mppy, within the critical collapse regime, regardless of the epoch in which

15



they were formed. Multiplying the obtained values by a chosen volume V
(which we will take as 1 Gpc®) we obtain the number of PBHs with mass
Mppy within that volume (cf. equation .

In Figures and we show the curves Qppg(to, Mppy) and
Nppu(to, Mppr), respectively, for the simple and critical collapse regime
when 5, = 107! s and n,,4, = 1.948.

logio (t,./15) = —1.0

—— simple

10910 (QpaH(to))

.0 25 3.0 35 4.0 4.5 5.0 5.5 6.0

10910 (Mpgn/1M o)

logio (tk,,,/15) =-1.0

—— simple

10910 (NpsH(to))

4.5 5.0 5.5 6.0

3‘5 4‘.0
10910 (Mpgn/1M o)

Figure 7: The curves QPBH(thMPBH) (top) and NPBH(tO,MPBH) (bellow) for
simple collapse regime when ¢, .= 107! s (see text for more details).
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10910 (tky,/15) =—1.0

—— critical

=12.54

10910 (QpaH(to))

-15.01

-17.54

-20.0

-2 -1 0 1 2 3 4 5

10910 (MpgH/1M o)

10910 (tky,/18) = —1.0

—— critical

-2 -1 0 1 2 3 4 5

10910 (MpgH/1M o)

Figure 8: The curves Qppp(to, Mppy) (top) and Nppg(to, Mppr) (bellow) for
the critical collapse regime when ¢, = 107! s (see text for more details).

To obtain the curves for the simple collapse regime, we use equations
and to determine the points of Qppy (o, tx), for each t;, and then, after
using equation , we multiply by the volume of 1 Gpc® and get the points
of Nppu(to,ty). For the critical collapse regime, the curves are obtained
through the matrices Ag and Ay. For each interval Alog(Mppy) we sum
all cells in the ¢, axis, for both matrices, and obtain the points to plot
Qppu(to, tx) and Npgy(to, tx), respectively.

We follow the same procedure in order to obtain the Qppg(to, Mppm)
and Nppy(to, MpBH curves for the QCD CM for the cases t;, .. = 1073 s

(Figures 9] and [10)), t,,.. = 107° s (Figures [11] and [12)), #,,.. = 1077 s
(Figures |13 and [14)) and ¢, , = 10~ 9 (Figures |15 and [16)).
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Figure 9: The curves Qppp(to, Mppy) (top) and Nppg(to, Mppr) (bellow) for
simple collapse regime when ¢, = 1072 s (see text for more details).
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Figure 10: The curves Qppp(to, Mppr) (top) and Nppg(to, Mppr) (bellow) for
the critical collapse regime when ¢, = 1072 s (see text for more details).
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Figure 11: The curves Qppp(to, Mppr) (top) and Nppg(to, Mppr) (bellow) for
simple collapse regime when ¢, = 107" s (see text for more details).
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Figure 12: The curves Qppp(to, Mppr) (top) and Nppg(to, Mppr) (bellow) for
the critical collapse regime when ¢, = 107" s (see text for more details).
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Figure 13: The curves Qppp(to, Mppr) (top) and Nppg(to, Mppr) (bellow) for
simple collapse regime when ¢, . = 1077 s (see text for more details).

22



10910 (tky,/15) =—=7.0

0.0
—— critical
-2.51
-5.0
=
X s
FS
GQ' -10.0 1
s
5 —~12.59
o°
-15.01
-=17.54
-20.0 T T T
-12 -10 -8 -6 -4 -2
10910 (MpgH/1M o)
10910 (tk,,/15)=—=7.0
—— critical
2041
:.5 15
X
a
=
; 10
—
o
o
5
0
-12 -10 -4 -2

-8 -6
10910 (MpgH/1M o)

Figure 14: The curves Qppp(to, Mppr) (top) and Nppg(to, Mppr) (bellow) for
the critical collapse regime when ¢, = 1077 s (see text for more details).
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Figure 15: The curves Qppp(to, Mppr) (top) and Nppg(to, Mppr) (bellow) for
simple collapse regime when ¢, = 1072 s (see text for more details).
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Figure 16: The curves Qppp(to, Mppr) (top) and Nppg(to, Mppr) (bellow) for
the critical collapse regime when ¢, = 1072 s (see text for more details).

The global value of the PBH density parameter, Qpgy, for a given case
can be obtained by integrating with respect to Mpgy the top curves pre-
sented in Figures [7] to [I6] In Table [I] we compile these global values for
all the studied cases considering both simple collapse and critical collapse.
We also determine in each case the contribution of Qpgy to the Cold Dark
Matter density parameter Qcpy = 0.265 (cf. |[Planck Collaboration et al.|
2020)).

The total value of the number of PBHs, Npgy, can also be obtained
by integrating with respect to Mpgy the curves at the bottom of Figures
to [I6] In Table [2] we compile these total values for all the studied cases
considering both simple collapse and critical collapse. We also determine the
Nppy maximum location, i.e., the mass for each of the curves. In Table
we show the mass spectra where PBH formation occurs for both regimes.
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Table 1: The global value of the PBH density parameter Qppp at the present
time for all the studied scenarios under the simple collapse and critical collapse
regimes. It is also shown the contribution of Qpgy to the Cold Dark Matter
density parameter Qcopay.

Simple collapse Critical collapse
t Q Q
log <k) Nmaz ~ QCD Qrpr ﬂ(%) Qrpr ﬂ(%)
s Qcpum Qcpm
-1 1.948 all 9.08 x 1076 3.43x1073 % | 1.53x107% 579 x107* %
-3 1.808 CM | 3.64 x 1074 0.137 % 6.09 x 107° 2.30 x 1072 %
-5 1.708 CM | 2.50 x 1072 9.45 % 4.40 x 1073 1.66 %
-7 1.619 CM | 1.05 x 1072 3.96 % 1.75 x 1073 0.66 %
-9 1.553 CM | 8.01 x 1072 30.2 % 1.32 x 1072 5.00 %
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Table 2: The total number of PBHs at the present time within a volume of 1
Gpc? for all the studied scenarios under the simple collapse and critical collapse
regimes. It is also shown the location, in solar masses, where the maximum of
PBHs formation occurs.

Simple collapse Critical collapse
t : :

log (1ks> Nmaz  QCD | N¥XSL (Gpe™3)  Peak (M) | N¥L(Gpe™)  Peak (Mg)
-1 1.948 all 3.15 x 10! 3.32 x 103 3.11 x 10! 5.89 x 102

-3 1.808 CM 2.63 x 10'° 16.5 2.53 x 101° 2.79
-5 1.708 CM 2.02 x 10% 0.123 1.99 x 10 | 2.21 x 1072

2.20 0.407
-7 1.619 CM | 1.50 x 10* |7.18x107* | 1.48 x 10*' | 1.23x 1074
-9 1.553 CM 2.20 x 10%* 3.60 x 107 2.17 x 10%* 6.03 x 1077

Table 3: The mass spectrum for which Npgy per Gpc? at the present time is at
least 1 for all the studied scenarios under the simple collapse and critical collapse
regimes.

Simple collapse Critical collapse
t
log (12) Mnaz QCD Mppn(Mo) Mppi (M)

-1 1.948 all [3.90 x 10% — 4.59 x 10%] [0.135 — 9.44 x 10?]

-3 1.808 CM [1.43 — 6.40 x 107] [1.43 x 10~° — 1.30 x 10?]
5 1.708 CM [4.64 x 1073 — 11.8] 6.92 x 1079 — 2.63]

7 1.619 CM [1.81 x 1075 — 0.11] [7.76 x 10712 — 2.09 x 10~2]
-9 1.553 CM | [4.97 x 1078 — 1.42 x 1073] | [2.54 x 10715 — 2.60 x 1074]
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In Figures to (top) the grey-shaded region represents the area where
PBH formation occurs, i.e., where Nppy(tg) > 1 (cf. equation for the
critical collapse regime. The line on top of the grey-shaded region represents
the same but now considering the simple collapse regime. In addition, it is
also shown in Figures|17]to [21] (bottom) the PBH distribution at the present
time in the form of a density plot. Both plots were obtained by using the
matrix Ay.
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Figure 17: The plot containing the grey-shaded region satisfying the inequality
Nppr(tp) > 1 (top) and the density plot (bellow) for Nppg(to) when ¢ . =
10! s. In the top plot it is also shown the line representing the simple collapse
regime (see text for more details).
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Figure 18: The plot containing the grey-shaded region satisfying the inequality
Nppr(tp) > 1 (top) and the density plot (bellow) for Nppg(tg) when ¢, =
1073 s. In the top plot it is also shown the line representing the simple collapse
regime (see text for more details).
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Figure 19: The plot containing the grey-shaded region satisfying the inequality
Nppr(to) > 1 (top) and the density plot (bellow) for Nppg(to) when t, . =
107® s. In the top plot it is also shown the line representing the simple collapse
regime (see text for more details).
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Figure 20: The plot containing the grey-shaded region satisfying the inequality
Nppr(to) > 1 (top) and the density plot (bellow) for Nppg(to) when t, . =
1077 s. In the top plot it is also shown the line representing the simple collapse
regime (see text for more details).
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Figure 21: The plot containing the grey-shaded region satisfying the inequality
Nppr(to) > 1 (top) and the density plot (bellow) for Nppg(to) when t, . =
1079 s. In the top plot it is also shown the line representing the simple collapse
regime (see text for more details).

4 Conclusions and future work

PBHs may have formed in the early Universe due to the collapse of den-
sity fluctuations, provided that the fluctuations exceed some threshold 6.
During the radiation-dominated Universe the value of this threshold remains
constant. However, if the Universe experiences some phase transition such
as the QCD phase transition then we might have a decrease on the value of
0. which in turn facilitates the formation of PBHs. In order to allow PBH
formation at some scale k£ on the early Universe, the value of the spectrum
index of the fluctuations n(k) should have been blue (i.e., n(k) > 1) at least
during some periods.
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It is often assumed that the majority of the PBHs formed at a particular
epoch would have masses within the order of the horizon mass (My) at that
epoch. However, if critical gravitational collapse is taken into account, then
we might have PBHs formation with a broader mass spectrum. We refer
to the first situation as simple collapse in opposition to the latter that is
known as critical collapse. We have explored the process of critical collapse
for PBH formation during the QCD epoch in the framework of a CM.

We have considered five different cases: ;.. = 1071 s, t;, = 1072 s,
thpee = 10708, tg,. = 107" s, and t;,,,, = 1072 s (with ¢, representing
the instant for which n(k) attains its maximum value). For each case, we
have determined the curves giving the PBH density parameter (Qppy) and
the PBH number (Nppgy) per Gpc® for both the simple and critical collapse
(Figures [7] to . We have also determined, for each of the five cases, the
Qppy and Nppy global values evaluated at the present time (Tables (1| and
2). We notice that at earlier epochs PBHs formed in greater numbers but
with smaller masses. As we move forward in time, the number of PBHs
formed decreases, but their masses increase, for both the simple and critical
regimes. In Table [T besides the global value of Qppy, it is also shown the
contribution of this value to Qcpys. In Table [2]it is also shown the location,
in solar masses, for the maximum value exhibited by the curve Npgpy.

Regarding the PBH density parameter Q2pgy it appears, in both regimes,
that as we go along from ¢, = 107! s to t, = 1077 s there is an increase in the
value of Qppy and therefore an increase on the contribution to the value of
Qcpar, with the case ti, = 1077 s being the exception (cf. Table . However,
we must bear in mind that the cases studied correspond to situations in which
we attempted to go as far as it was allowed by the observational constraints.
The exception reported for the case t, = 1077 s is a direct consequence of
the observational constraints (see Figures [2 to [6).

In Table [3| we show the PBH mass spectrum for all the studied scenarios
and for both collapse regimes. In Figures [17] to [21| we show the region in the
plane (log(tx),log(Mppr)) where PBH formation occurs within the critical
collapse regime together with the line representing the simple collapse regime.
Besides that, we show the value of Npgy for each cell in the same plane in
the form of a density plot.

From the analysis of Table |3| we see that under the critical collapse regime
the mass spectrum is much broader. In the case of t;,,. = 107°s, for
example, the mass spectrum extends from ~ 1073 Mg up to ~ 10 M, for
the simple collapse regime and from ~ 107° My up to ~ 3 M, when the
critical collapse regime is taken into account. Despite this difference in the
extent of the mass spectrum, it can be seen that the value of N¥& is of the
same order for both regimes (cf. Table . In the case of t;, . = 107" s, for

max max max

max
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example, we have ~ 10! PBHs per Gpc? regardless of the regime considered.

Although the number of PBHs is of the same order of magnitude in
both regimes, though consistently slightly lower in the critical collapse
regime (cf. Table , the same does not happen when we are talking about the
contribution to the value of the Q¢pys parameter with the critical collapse
giving always lower contributions (cf. Table. Inthe casety, . = 1075 s, for
example, we have a contribution of 1.66% under the critical collapse against
9.45% obtained when considering the simple collapse. This happens because,
although we have practically the same number of PBHs for both regimes, in
the critical collapse regime they are dispersed over a wider mass range with
a propensity for lower masses (cf. Table [3)).

In terms of future work we intend to extend our study regarding the
formation of PBHs during the QCD epoch due to critical collapse to the Bag
Model (BM) and Lattice Fit Model (LFM) as well. Beyond that, it would
also be worth studying the effect of critical collapse for different epochs such
as the Electroweak phase transition and the cosmological electron-positron
annihilation epoch.
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